

Derating Of Tantalum & Niobium Oxide Capacitors

Do you need voltage de-rating in all applications? Or why can't a tantalum be more like a ceramic ?

Introduction - Reliability

- Ideal Solid Electrolytic Capacitor AVX Goal
 - Zero (0) Voltage derating required
 - Zero (0) Impedance circuit use
 - Zero (0) failures
- Design Rules Tantalum (General Industry)
 - When circuit impedance less than 0.1ohm per volt e.g battery line use 0.3 x Vrated, in all other cases use 0.5 x Vrated.

Design Rules

- General 50% voltage derating, in very low impedance circuits 70%
- For below 10v use 80% derate condition

Reliability

<u>Reliability Management</u>

- Voltage de-rating has a <u>powerful</u> influence on application failure rate for BOTH steady-state and Dynamic reliability.
- Voltage de-rating to counter the influences of : temperature, base failure rate, circuit impedance (peak currents) and transients.
- Need for voltage de-rating can be reduced by use of Soft Start circuits, added series resistance (peak current limited), design control, temperature control, <u>high reliability series capacitors</u>.
- Most voltage de-rating is used to prevent failures due to high peak <u>currents</u>

Reliability - Voltage De-rating

Reliability - Temperature

Reliability – Circuit Impedance

STEADY STATE RELIABILITY

$F = Fu \times Ft \times Fr \times Fb$

- **Fu** correction factor due to voltage derating 4 ranges within 10-100% rated voltage
- **Ft** correction factor due to operating temperature 2 ranges within temperature range 25/125°C
- **Fr** correction factor due to series resistance 2 ranges within 0.1-10 Ohms
- **Fb** basic failure rate level

1%/1000 hours for standard product

EXAMPLE CALCULATION

Application conditions

basic failure rate

85°C, 0.1 Ohm/volt, 5 volt rail

Failure rate = Fu x Ft x Fr x 1%/1000 hours

6.3 volt capacitor

Fu = 0.12, Ft = 1, Fr = 1

F = 0.12 x 1 x 1 x 1%/1000 Hrs = **0.12 %/1000 Hrs**

MTBF = 10⁵/ 0.12 = 833,333 Hrs = 34,722 days = **95 Years** **10 volt capacitor**

Fu = 0.007, Ft = 1, Fr = 1

F = 0.007 x 1 x 1 x 1%/1000 Hrs = 0.007 %/1000 Hrs

MTBF = 10⁵/ 0.007 = 14,285,238 Hrs = 595,238 days = **1,631 Years**

FAILURE RATE CURVE

STEADY STATE FAILURE RATE

Dynamic Reliability

- Why does voltage de-rating play such an important role in both steady-state and dynamic reliability ?
- The role of self-healing in the 'no wear out' mechanism
- What occurs if self healing is overcome and becomes a 'hot-spot'
- Preventative measures
- Risk reduction and elimination

Circuit Impedance

Assume **0.1 Ohms** maximum impedance & Input Voltage is **4.5V**

: I = V / R = 4.5v / 0.1ohms = 45Amps !!

Can a Tantalum Capacitor take this?

Yes - IF suitable derating is applied

This current is classed as Surge

Very high levels of voltage derating (70%) for Tantalum capacitors should be used on the input if no other solution is possible.

Reliability

Improvements made by AVX include :

Surge robust designs

- Slurry Manganese for even current distribution over the anode
- Hi purity tantalum anodes for low defect density dielectric
- High strength anodes good thermal conductivity
- Shell Formation high localised dielectric thickness on anode surface to reduce localised electrical field strength

Verification of design and process

- 100% very low impedance (high current) burn-in
- 100% Dynamic Surge high peak current and current monitor

Dynamic Surge Current Test

- Fast turn on gives large instantaneous current
- Capacitors fail at first power up in a low impedance circuit (probability of failure significantly reduces with following power up)
- Test failures NOT field issue if the in house test condition are in excess of worst field conditions

Dynamic Surge Current Test Monitoring

Actual 'Hard Surge' Profile

	Niobiu	m versus	Tantalum	
NEW PRODUCT – NI	<mark>OBIUM OXIDE</mark>	CAPACITOR	OxiCap TM	
Parameter	TANTALUM	NIOBIUM	NIOBIUM OXIDE	
Dielectric	Ta_2O_5	Nb_2O_5	Nb_2O_5	
CV	standard	lower-same*	lower-same*	
Rated Voltage	2.5 - 50V	4 - 16	2.5 - 10v	
Cap tolerance	+/-10%	+/-10% (20%)#	+/- 20%	
DCL	0.01CV	$0.01 - 0.04 CV^{\#}$	0.02CV (0.01*)	
ESR (same anode design)	standard	comparable	comparable	
DF	standard	same/higher	same/higher	
Ignition Resistance	low	low	very high	
Temperature Range	-55 / +125c	-55 / +125 (105)#	-55 / +125c	
Basic Reliability	1%/1000hrs	same	0.2%/1000hrs	
Tantalum Capacitors				
		retion 2002		

Niobium versus Tantalum

Higher overloading possible on NbO OxiCapTM capacitor

DERATING

DC/DC power input rating recommendation*			
Rail Voltage	Rated Voltage		
	Та	Nb	NbO
3.3V	6.3V	6.3V	4V
5V	10V	10V	6.3V

* at temperature up to 85°C

20% derating sufficient on NbO OxiCapTM capacitor

Surge Performance OxiCap[™] v Tantalum

Superior :

- By Design
- By Material Characteristics
- ◆ By Performance Measure

Parameter	End Value	Tantalum	Niobium	Nb Oxide
Powder		Ta metal	Nb metal	NbO
Dielectric	electrical properti	es Ta_2O_5	Nb_2O_5	Nb ₂ O ₅
Thickness [10 ⁻⁹ m/V]	CV	1.7	2.5	2.5
Dielectric Constant [-] CV	27	41	41
Formation ratio		3:1	4:1	4:1

Example: 6.3 Volt capacitor

Tantalum $3 \ge 1.7 \ge 6.3 = 32 \text{ nm}$ OxiCapTM $4 \ge 2.5 \ge 6.3 = 63 \text{ nm}$

I.e. 2 x dielectric thickness for same rated voltage

NB : Electrical Field Stress on the dielectric is 50% reduced.

Example: 6.3 Volt Tantalum Vs 4V OxiCapTM

Tantalum	3 x 1.7 x 6.3	=	32 nm
OxiCap TM	4 x 2.5 x 4	=	40 nm

I.e. Still 25% thicker dielectric for OxiCap v Tantalum

Example: 6.3 Volt Ta Vs 4V OxiCapTM

Used on a 3.3v power rail, the Electrical Field Strength is

Tantalum 3.3v/32nm = 103kV/mm

OxiCapTM 3.3v/40nm = 82kV/mm

Electrical Field Strength on the OxiCap is still less than for tantalum despite the difference in 20% v 50% derating

Tantalum Capacitors

Example: 10 Volt Ta Vs 6.3V OxiCapTM

Used on a 4.2v power rail, the Electrical Field Strength is

Tantalum 4.2v/51nm = 82kV/mm

OxiCapTM 4.2v/63nm = 67kV/mm

Electrical Field Strength on the OxiCap is still less than for tantalum despite the difference in 20% v 50% derating

Tantalum Capacitors

Hard current pulse results: (Same current)

Parameter	End Value	Fantalum	Niobium	Nb Oxide
Powder		Ta metal	Nb metal	NbO ceramic
Density [g/cc]	weight, drop test, CV	16.4	8.6	7.3
Ignition Energy [mJ]	resistance to burn	2	2	600
Burning Rate [mm/s]	burning speed	11.5	8	1.5
Specific Heat [J/mol/K] <u>load resistance</u>	25	25	40

Nb : The higher amount of energy needed to increase the temperature of Oxide reduces the tendency to easily develop hot spots which in turn can lead to thermal breakdown and short-circuit.

Typical Breakdown Voltage (4V part):

Polymer: 11 to 15V

<u>OxiCapTM</u>: 18 – 24V

Figure 1: Typical breakdown voltage

Breakdown resistance is a function of voltage. Resistance measured at 0.5V: <u>Polymer</u>: 0.3 Ohms to 10kOhms with mean 2Ohms = **low resistance** <u>OxiCapTM:</u> 9 Ohms to 1MOhm with mean 34kOhms = **high resistance**

Figure 2: Resistance distribution of shorted capacitors at 0.5V

Failed OxiCapTM Will Not Burn up to Category Voltage

Figure 3: Resistance dependence of shorted capacitors to 3.3V

Failed OxiCapTM Will Not Burn up to Category Voltage

Figure 4: Resistance dependence of shorted capacitors

Reliability Comparisons

reliability %	1000hrs	specification	typical
Tantalum	TAJ, TPS	1.00%	0.1 - 0.2%
K=27	THJ,TRJ	0.50%	0.10%
FR 3:1	Military	0.10%	0.01 - 0.1%
	TAC	0.10%	0.04%
OxiCapTM	NOJ	0.50%	0.01%
K=41, FR 6:1	NOS	0.20%	0.01%

SUMMARY (1)

- "Voltage" derating is actually to prevent the failure of the capacitor due to an excess "current".
- Tantalum capacitors can be used at 80% of their rated voltage, but the MTBF will be lower.
- The less voltage derating applied the higher the leakage current.
- If a tantalum must be used across a low impedance source, consider incorporating a PFET integrator to reduce risk of failure
- ◆ 20% derating sufficient for OxiCap[™] NbO capacitor
- Select—a—Cap software is ready to advise the correct part number including typical parameters in the application circuit.

- To provide a higher reliability tantalum series of capacitors for low impedance circuits i.e no voltage de-rating would require :
 - Best in Class Tantalum powders as a design restriction
 - Higher design formation ratio minimum
 - High Shell Formation applied as a design restriction
- To provide verification of performance would require :
 - 100% multiple 'extra hard' surge testing
 - 100% ultra low impedance burn in
- Implications
 - Increased cost (less for OxiCap)
 - Reduced range (extended range types not available)
 - Close co-operation with customers